google gemini api使用

google gemini api使用

google最近发布了gemini api,我之前在我的博客 介绍了如何申请,这篇文章来介绍如何使用

首先下载google的库

1
pip install -q -U google-generativeai

引入必要的包

1
2
3
4
5
6
7
8
9
10
11
12
import pathlib
import textwrap

import google.generativeai as genai

from IPython.display import display
from IPython.display import Markdown


def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))

先将api添加到环境变量

1
export GOOGLE_API_KEY=你的密钥

接下来获取密钥

1
2
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)

可以通过下面命令获取所有模型

1
2
3
for m in genai.list_models():
if 'generateContent' in m.supported_generation_methods:
print(m.name)

文本输入

接下来创建一个模型,并输入一个prompt,获取输出并转换成markdown格式

1
2
3
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("What is the meaning of life?")
to_markdown(response.text)
如果你的prompt比较奇奇怪怪,那么可能会不能正常获取到返回,你可以查看response.prompt_feedback获取原因。

还有一个有趣的事情,gemini可能会生成多个输出(candidates),通过response.candidates获取。

流式传输也是可以的

1
2
3
4
response = model.generate_content("What is the meaning of life?", stream=True)
for chunk in response:
print(chunk.text)
print("_"*80)

图片输入

下载官方的示例图片

1
curl -o image.jpg https://t0.gstatic.com/licensed-image?q=tbn:ANd9GcQ_Kevbk21QBRy-PgB4kQpS79brbmmEG7m3VOTShAn4PecDU5H5UxrJxE3Dw1JiaG17V88QIol19-3TM2wCHw
通过下面的代码可以查看图片
1
2
3
4
import PIL.Image

img = PIL.Image.open('image.jpg')
img
image.png

接下来创建模型,并获取输出

1
2
3
4
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(img)

to_markdown(response.text)

也可以同时提供文本和图像

1
2
3
response = model.generate_content(["Write a short, engaging blog post based on this picture. It should include a description of the meal in the photo and talk about my journey meal prepping.", img], stream=True)
response.resolve()
to_markdown(response.text)

聊天

初始化聊天:

1
2
3
model = genai.GenerativeModel('gemini-pro')
chat = model.start_chat(history=[])
chat

开始聊天

1
2
response = chat.send_message("In one sentence, explain how a computer works to a young child.")
to_markdown(response.text)

你一定想在这里使用图片聊天,请注意,gemini-pro-vision未针对多轮聊天进行优化

可以通过chat.history 获取聊天历史

1
2
for message in chat.history:
display(to_markdown(f'**{message.role}**: {message.parts[0].text}'))

流式传输也可以使用

1
2
3
4
5
response = chat.send_message("Okay, how about a more detailed explanation to a high schooler?", stream=True)

for chunk in response:
print(chunk.text)
print("_"*80)

嵌入

使用起来没啥可说的

1
2
3
4
5
6
7
8
result = genai.embed_content(
model="models/embedding-001",
content="What is the meaning of life?",
task_type="retrieval_document",
title="Embedding of single string")

# 1 input > 1 vector output
print(str(result['embedding'])[:50], '... TRIMMED]')

当然,批量处理也可以

1
2
3
4
5
6
7
8
9
10
11
12
result = genai.embed_content(
model="models/embedding-001",
content=[
'What is the meaning of life?',
'How much wood would a woodchuck chuck?',
'How does the brain work?'],
task_type="retrieval_document",
title="Embedding of list of strings")

# A list of inputs > A list of vectors output
for v in result['embedding']:
print(str(v)[:50], '... TRIMMED ...')

你甚至可以传递一个chat.history

1
2
3
4
5
6
7
result = genai.embed_content(
model = 'models/embedding-001',
content = chat.history)

# 1 input > 1 vector output
for i,v in enumerate(result['embedding']):
print(str(v)[:50], '... TRIMMED...')


google gemini api使用
https://studyinglover.com/2023/12/14/google gemini api使用/
作者
StudyingLover
发布于
2023年12月14日
许可协议